M1.
(a) methane is produced
ignore bad smell
which is a greenhouse gas / causes global warming
(b) $\quad(9.80 / 0.20=49$ therefore $) 49: 1$
(c) horse (manure)
allow ecf from 11.2
closest to $25: 1$ (ratio)
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up
by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.
0 marks:
No relevant content.
Indicative content
statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves
(e) any three from:
(storage conditions)
- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay) allow reference to bacteria / fungi / mould

M2. (a) photosynthesis
(b) (i) 140
(ii) (10 billion tonnes) more added (to atmosphere) than removed allow ecf from part (b)(i)

M3. (a) (i) counts / 12
$\times 120 \times 80 / \times 9600$
or
\times area of field
(ii) (more) quadrats / repeats
placed randomly
ignore method of achieving randomness
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- $\quad \mathrm{pH}$ (of soil)
- trampling
- herbivores
ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die
microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as $\mathrm{Pb} / \mathrm{Zn}$ / Cr / oil / SO ${ }_{2}$ / acid rain / pesticides / litter ignore chemicals unqualified ignore waste unqualified ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen allow fewer species in more polluted water ignore none are found at site C

M4. (a) wear a face mask
allow wear gloves
(b) Level 2 (3-4 marks):

A detailed and coherent plan covering all the major steps. It sets out the steps needed in
a logical manner that could be followed by another person to produce an outcome which
will address the hypothesis.

Level 1 (1-2 marks):

Simple statements relating to steps are made but they may not be in a logical order.
The plan may not allow another person to produce an outcome which will address the hypothesis.

0 marks:

No relevant content.

Indicative content

Plan:

- cut a specified number of pieces of bread to the same size
- place mould spores on the bread
- the number of mould spores needs to be the same quantity of mould spores on each piece of bread
- place bread in different sealable plastic bags
- place in different temperatures (minimum of three) eg fridge, room, incubator
- leave each for the same amount of time eg four days
- measure the percentage cover of mould on each piece of bread
- repeat experiment
additional examiner guidance:
- good level 2 answer will describe how the growth of mould can be measured and
will give a range of different temperatures to be used
- allow equivalent levels of credit for alternative methodologies that would clearly produce a measurable outcome in terms of mould growth at various temperatures
(c) any one from:
- type of mould
- amount of mould (put on each piece of bread)
- amount of air in the plastic bags
- size of the pieces of bread
- type of bread
- amount of moisture / water added
(d) $(56-4=52) / 5$
10.4
allow 10.4 with no working shown for 2 marks
ecf for incorrectly read figures for 1 mark
(e) (decomposition occurs at a faster rate when the temperature is higher or amount of decomposition is higher when temperature is higher

M5.
(a) limiting their movement
or controlling the temperature of their surroundings
reason:
reduces energy transfer
if no other marks awarded, allow $\mathbf{1}$ mark for: 'fit more chickens in same space'
(b) (i) without oxygen
ignore 'without air'
(ii) any two from:

- ethanol
allow alcohol
- carbon dioxide
- lactic acid.
do not accept energy / ATP (apply list rule)
(c) enzymes are denatured / change shape ignore microbes are killed
(enzyme) shape is vital for function or won't work (as efficiently)
(d) (i) 200
(ii) 120
allow ecf from (d)(i)
e.g.

60 x 100 (i)
(e) causes global warming
one predicted consequence of global warming
eg rising sea levels, climate change, change in migration patterns, change in distribution of species
or
methane is flammable so might cause fire / damage
if no other marks awarded, allow methane is a greenhouse gas for 1 mark

